Frequency-hopping spread spectrum

Multiplex
techniques
Circuit mode
(constant bandwidth)
TDM · FDM · SDM
Polarization multiplexing
Spatial multiplexing (MIMO)
Statistical multiplexing
(variable bandwidth)
Packet mode · Dynamic TDM
FHSS · DSSS
OFDMA · SC-FDM · MC-SS
Related topics
Channel access methods
Media Access Control (MAC)

Frequency-hopping spread spectrum (FHSS) is a method of transmitting radio signals by rapidly switching a carrier among many frequency channels, using a pseudorandom sequence known to both transmitter and receiver. It is utilized as a multiple access method in the frequency-hopping code division multiple access (FH-CDMA) scheme.

A spread-spectrum transmission offers three main advantages over a fixed-frequency transmission:

  1. Spread-spectrum signals are highly resistant to narrowband interference. The process of re-collecting a spread signal spreads out the interfering signal, causing it to recede into the background.
  2. Spread-spectrum signals are difficult to intercept. An FHSS signal simply appears as an increase in the background noise to a narrowband receiver. An eavesdropper would only be able to intercept the transmission if the pseudorandom sequence was known.
  3. Spread-spectrum transmissions can share a frequency band with many types of conventional transmissions with minimal interference. The spread-spectrum signals add minimal noise to the narrow-frequency communications, and vice versa. As a result, bandwidth can be utilized more efficiently.

Contents

Military use

Spread-spectrum signals are highly resistant to deliberate jamming, unless the adversary has knowledge of the spreading characteristics. Military radios use cryptographic techniques to generate the channel sequence under the control of a secret Transmission Security Key (TRANSEC) that the sender and receiver share in advance.

By itself, frequency hopping provides only limited protection against eavesdropping and jamming. There is a simple algorithm that effectively discovers the sequence of frequencies. To get around this weakness most modern military frequency hopping radios employ separate encryption devices such as the KY-57. U.S. military radios that use frequency hopping include the JTIDS/MIDS family, HAVE QUICK and SINCGARS.

Civilian use

Since the Federal Communications Commission (FCC) amended rules to allow frequency hopping spread spectrum systems in the unregulated 2.4 GHz band, many consumer devices in that band have employed various spread-spectrum modes.

Some walkie-talkies that employ frequency-hopping spread spectrum technology have been developed for unlicensed use on the 900 MHz band. Several such radios are marketed under the name eXtreme Radio Service (eXRS). Despite the name's similarity to the FRS allocation, the system is a proprietary design, rather than an official U.S. Federal Communications Commission (FCC) allocated service.

Technical considerations

The overall bandwidth required for frequency hopping is much wider than that required to transmit the same information using only one carrier frequency. However, because transmission occurs only on a small portion of this bandwidth at any given time, the effective interference bandwidth is really the same. Whilst providing no extra protection against wideband thermal noise, the frequency-hopping approach does reduce the degradation caused by narrowband interferers.

One of the challenges of frequency-hopping systems is to synchronize the transmitter and receiver. One approach is to have a guarantee that the transmitter will use all the channels in a fixed period of time. The receiver can then find the transmitter by picking a random channel and listening for valid data on that channel. The transmitter's data is identified by a special sequence of data that is unlikely to occur over the segment of data for this channel and the segment can have a checksum for integrity and further identification. The transmitter and receiver can use fixed tables of channel sequences so that once synchronized they can maintain communication by following the table. On each channel segment, the transmitter can send its current location in the table.

In the US, FCC part 15 on unlicensed system in the 900 MHz and 2.4 GHz bands permits more power than non-spread spectrum systems. Both frequency hopping and direct sequence systems can transmit at 1 Watt. The limit is increased from 1 milliwatt to 1 watt or a thousand times increase. The Federal Communications Commission (FCC) prescribes a minimum number of channels and a maximum dwell time for each channel.

In a real multipoint radio system, space allows multiple transmissions on the same frequency to be possible using multiple radios in a geographic area. This creates the possibility of system data rates that are higher than the Shannon limit for a single channel. Spread spectrum systems do not violate the Shannon limit. Spread spectrum systems rely on excess signal to noise ratios for sharing of spectrum. This property is also seen in MIMO and DSSS systems. Beam steering and directional antennas also facilitate increased system performance by providing isolation between remote radios.

Multiple inventors

Perhaps the earliest mention of frequency hopping in the open literature is in radio pioneer Johannes Zenneck's book Wireless Telegraphy (German, 1908, English translation McGraw Hill, 1915), although Zenneck himself states that Telefunken had already tried it.

The German military made limited use of frequency hopping for communication between fixed command points in World War I to prevent eavesdropping by British forces, who did not have the technology to follow the sequence.[1]

A Polish engineer, Leonard Danilewicz, came up with the idea in 1929.[2] Several other patents were taken out in the 1930s, including one by Willem Broertjes (U.S. Patent 1,869,659, issued Aug. 2, 1932).

During World War II, the US Army Signal Corps was inventing a communication system called SIGSALY, which incorporated spread spectrum in a single frequency context. However, SIGSALY was a top-secret communications system, so its existence did not become known until the 1980s.

The most celebrated invention of frequency hopping was that of actress Hedy Lamarr and composer George Antheil, who in 1942 received U.S. Patent 2,292,387 for their "Secret Communications System". This early version of frequency hopping used a piano-roll to change between 88 frequencies, and was intended to make radio-guided torpedoes harder for enemies to detect or to jam. The patent was rediscovered in the 1950s during patent searches when private companies independently developed Code Division Multiple Access, a civilian form of spread-spectrum.

Variations of FHSS

Adaptive Frequency-hopping spread spectrum (AFH) (as used in Bluetooth) improves resistance to radio frequency interference by avoiding using crowded frequencies in the hopping sequence. This sort of adaptive transmission is easier to implement with FHSS than with DSSS.

The key idea behind AFH is to use only the “good” frequencies, by avoiding the "bad" frequency channels—perhaps those "bad" frequency channels are experiencing frequency selective fading, or perhaps some third party is trying to communicate on those bands, or perhaps those bands are being actively jammed. Therefore, AFH should be complemented by a mechanism for detecting good/bad channels.

However, if the radio frequency interference is itself dynamic, then the strategy of “bad channel removal”, applied in AFH might not work well. For example, if there are several colocated frequency-hopping networks (as Bluetooth Piconet), then they are mutually interfering and the strategy of AFH fails to avoid this interference.

In this case, there is a need to use strategies for dynamic adaptation of the frequency hopping pattern.[3] Such a situation can often happen in the scenarios that use unlicensed spectrum.

In addition, dynamic radio frequency interference is expected to occur in the scenarios related to cognitive radio, where the networks and the devices should exhibit frequency-agile operation.

Chirp modulation can be seen as a form of frequency-hopping that simply scans through the available frequencies in consecutive order.

The GSM cellular system uses frequency hopping, as a form of frequency interleaving, in view to avoid that two phone calls in adjacent cells constantly interfere with each other. However, this is not considered as spread spectrum, since the two phonecalls within the same cell never use the same frequency.

See also

Notes

  1. ^ Denis Winter, Haig's Command - A Reassessment
  2. ^ Danilewicz later recalled: "In 1929 we proposed to the General Staff a device of my design for secret radio telegraphy which fortunately did not win acceptance, as it was a truly barbaric idea consisting in constant changes of transmitter frequency. The commission did, however, see fit to grant me 5,000 złotych for executing a model and as encouragement to further work." Cited in Władysław Kozaczuk, Enigma: How the German Machine Cipher Was Broken, and How It Was Read by the Allies in World War II, 1984, p. 27.
  3. ^ Petar Popovski; Hiroyuki Yomo and Ramjee Prasad (December 2006). Strategies For Adaptive Frequency Hopping In The Unlicensed Bands. IEEE Wireless Communications. http://kom.aau.dk/~petarp/papers/DAFH-AFR.pdf. Retrieved 2008-03-02. 

References

External links